3.14.23 \(\int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx\) [1323]

3.14.23.1 Optimal result
3.14.23.2 Mathematica [A] (verified)
3.14.23.3 Rubi [A] (verified)
3.14.23.4 Maple [A] (verified)
3.14.23.5 Fricas [A] (verification not implemented)
3.14.23.6 Sympy [F]
3.14.23.7 Maxima [F(-2)]
3.14.23.8 Giac [A] (verification not implemented)
3.14.23.9 Mupad [B] (verification not implemented)

3.14.23.1 Optimal result

Integrand size = 27, antiderivative size = 252 \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {3 x}{8 b}-\frac {\left (a^2-3 b^2\right ) x}{2 b^3}-\frac {\left (a^4-3 a^2 b^2+3 b^4\right ) x}{b^5}+\frac {2 \left (a^2-b^2\right )^{5/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a b^5 d}-\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {a \cos (c+d x)}{b^2 d}-\frac {a \left (a^2-3 b^2\right ) \cos (c+d x)}{b^4 d}+\frac {a \cos ^3(c+d x)}{3 b^2 d}+\frac {3 \cos (c+d x) \sin (c+d x)}{8 b d}+\frac {\left (a^2-3 b^2\right ) \cos (c+d x) \sin (c+d x)}{2 b^3 d}+\frac {\cos (c+d x) \sin ^3(c+d x)}{4 b d} \]

output
-3/8*x/b-1/2*(a^2-3*b^2)*x/b^3-(a^4-3*a^2*b^2+3*b^4)*x/b^5+2*(a^2-b^2)^(5/ 
2)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a/b^5/d-arctanh(cos(d* 
x+c))/a/d-a*cos(d*x+c)/b^2/d-a*(a^2-3*b^2)*cos(d*x+c)/b^4/d+1/3*a*cos(d*x+ 
c)^3/b^2/d+3/8*cos(d*x+c)*sin(d*x+c)/b/d+1/2*(a^2-3*b^2)*cos(d*x+c)*sin(d* 
x+c)/b^3/d+1/4*cos(d*x+c)*sin(d*x+c)^3/b/d
 
3.14.23.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 220, normalized size of antiderivative = 0.87 \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {96 a^5 c-240 a^3 b^2 c+180 a b^4 c+96 a^5 d x-240 a^3 b^2 d x+180 a b^4 d x-192 \left (a^2-b^2\right )^{5/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )+24 a^2 b \left (4 a^2-9 b^2\right ) \cos (c+d x)-8 a^2 b^3 \cos (3 (c+d x))+96 b^5 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-96 b^5 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-24 a^3 b^2 \sin (2 (c+d x))+48 a b^4 \sin (2 (c+d x))+3 a b^4 \sin (4 (c+d x))}{96 a b^5 d} \]

input
Integrate[(Cos[c + d*x]^5*Cot[c + d*x])/(a + b*Sin[c + d*x]),x]
 
output
-1/96*(96*a^5*c - 240*a^3*b^2*c + 180*a*b^4*c + 96*a^5*d*x - 240*a^3*b^2*d 
*x + 180*a*b^4*d*x - 192*(a^2 - b^2)^(5/2)*ArcTan[(b + a*Tan[(c + d*x)/2]) 
/Sqrt[a^2 - b^2]] + 24*a^2*b*(4*a^2 - 9*b^2)*Cos[c + d*x] - 8*a^2*b^3*Cos[ 
3*(c + d*x)] + 96*b^5*Log[Cos[(c + d*x)/2]] - 96*b^5*Log[Sin[(c + d*x)/2]] 
 - 24*a^3*b^2*Sin[2*(c + d*x)] + 48*a*b^4*Sin[2*(c + d*x)] + 3*a*b^4*Sin[4 
*(c + d*x)])/(a*b^5*d)
 
3.14.23.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3042, 3376, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^6}{\sin (c+d x) (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3376

\(\displaystyle \int \left (\frac {\left (a^2-b^2\right )^3}{a b^5 (a+b \sin (c+d x))}+\frac {a \left (a^2-3 b^2\right ) \sin (c+d x)}{b^4}+\frac {\left (3 b^2-a^2\right ) \sin ^2(c+d x)}{b^3}+\frac {-a^4+3 a^2 b^2-3 b^4}{b^5}+\frac {a \sin ^3(c+d x)}{b^2}+\frac {\csc (c+d x)}{a}-\frac {\sin ^4(c+d x)}{b}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (a^2-b^2\right )^{5/2} \arctan \left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{a b^5 d}-\frac {a \left (a^2-3 b^2\right ) \cos (c+d x)}{b^4 d}+\frac {\left (a^2-3 b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b^3 d}-\frac {x \left (a^2-3 b^2\right )}{2 b^3}-\frac {x \left (a^4-3 a^2 b^2+3 b^4\right )}{b^5}-\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {a \cos ^3(c+d x)}{3 b^2 d}-\frac {a \cos (c+d x)}{b^2 d}+\frac {\sin ^3(c+d x) \cos (c+d x)}{4 b d}+\frac {3 \sin (c+d x) \cos (c+d x)}{8 b d}-\frac {3 x}{8 b}\)

input
Int[(Cos[c + d*x]^5*Cot[c + d*x])/(a + b*Sin[c + d*x]),x]
 
output
(-3*x)/(8*b) - ((a^2 - 3*b^2)*x)/(2*b^3) - ((a^4 - 3*a^2*b^2 + 3*b^4)*x)/b 
^5 + (2*(a^2 - b^2)^(5/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] 
)/(a*b^5*d) - ArcTanh[Cos[c + d*x]]/(a*d) - (a*Cos[c + d*x])/(b^2*d) - (a* 
(a^2 - 3*b^2)*Cos[c + d*x])/(b^4*d) + (a*Cos[c + d*x]^3)/(3*b^2*d) + (3*Co 
s[c + d*x]*Sin[c + d*x])/(8*b*d) + ((a^2 - 3*b^2)*Cos[c + d*x]*Sin[c + d*x 
])/(2*b^3*d) + (Cos[c + d*x]*Sin[c + d*x]^3)/(4*b*d)
 

3.14.23.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3376
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) 
 + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(d*sin[ 
e + f*x])^n*(a + b*sin[e + f*x])^m*(1 - sin[e + f*x]^2)^(p/2), x], x] /; Fr 
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, 2*n, p/2] && ( 
LtQ[m, -1] || (EqQ[m, -1] && GtQ[p, 0]))
 
3.14.23.4 Maple [A] (verified)

Time = 0.86 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.33

method result size
derivativedivides \(\frac {\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {2 \left (\frac {\left (\frac {1}{2} a^{2} b^{2}-\frac {9}{8} b^{4}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{3} b -3 a \,b^{3}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {1}{2} a^{2} b^{2}-\frac {1}{8} b^{4}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a^{3} b -7 a \,b^{3}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{2} b^{2}+\frac {1}{8} b^{4}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a^{3} b -\frac {19}{3} a \,b^{3}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{2} b^{2}+\frac {9}{8} b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a^{3} b -\frac {7 a \,b^{3}}{3}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {\left (8 a^{4}-20 a^{2} b^{2}+15 b^{4}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}\right )}{b^{5}}+\frac {\left (2 a^{6}-6 a^{4} b^{2}+6 a^{2} b^{4}-2 b^{6}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a \,b^{5} \sqrt {a^{2}-b^{2}}}}{d}\) \(336\)
default \(\frac {\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {2 \left (\frac {\left (\frac {1}{2} a^{2} b^{2}-\frac {9}{8} b^{4}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{3} b -3 a \,b^{3}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {1}{2} a^{2} b^{2}-\frac {1}{8} b^{4}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a^{3} b -7 a \,b^{3}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{2} b^{2}+\frac {1}{8} b^{4}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 a^{3} b -\frac {19}{3} a \,b^{3}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{2} b^{2}+\frac {9}{8} b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a^{3} b -\frac {7 a \,b^{3}}{3}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {\left (8 a^{4}-20 a^{2} b^{2}+15 b^{4}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}\right )}{b^{5}}+\frac {\left (2 a^{6}-6 a^{4} b^{2}+6 a^{2} b^{4}-2 b^{6}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a \,b^{5} \sqrt {a^{2}-b^{2}}}}{d}\) \(336\)
risch \(-\frac {x \,a^{4}}{b^{5}}+\frac {5 x \,a^{2}}{2 b^{3}}-\frac {15 x}{8 b}-\frac {a^{3} {\mathrm e}^{i \left (d x +c \right )}}{2 b^{4} d}+\frac {9 a \,{\mathrm e}^{i \left (d x +c \right )}}{8 d \,b^{2}}-\frac {a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{2 b^{4} d}+\frac {9 a \,{\mathrm e}^{-i \left (d x +c \right )}}{8 b^{2} d}-\frac {i \sqrt {a^{2}-b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \left (\sqrt {a^{2}-b^{2}}-a \right )}{b}\right )}{d b a}+\frac {i \sqrt {a^{2}-b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}+a \right )}{b}\right )}{d b a}+\frac {i \sqrt {a^{2}-b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}+a \right )}{b}\right )}{d \,b^{5}}-\frac {2 i \sqrt {a^{2}-b^{2}}\, a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}+a \right )}{b}\right )}{d \,b^{3}}+\frac {2 i \sqrt {a^{2}-b^{2}}\, a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \left (\sqrt {a^{2}-b^{2}}-a \right )}{b}\right )}{d \,b^{3}}-\frac {i \sqrt {a^{2}-b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \left (\sqrt {a^{2}-b^{2}}-a \right )}{b}\right )}{d \,b^{5}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}-\frac {\sin \left (4 d x +4 c \right )}{32 b d}+\frac {a \cos \left (3 d x +3 c \right )}{12 d \,b^{2}}+\frac {\sin \left (2 d x +2 c \right ) a^{2}}{4 b^{3} d}-\frac {\sin \left (2 d x +2 c \right )}{2 b d}\) \(533\)

input
int(cos(d*x+c)^6*csc(d*x+c)/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(1/a*ln(tan(1/2*d*x+1/2*c))-2/b^5*(((1/2*a^2*b^2-9/8*b^4)*tan(1/2*d*x+ 
1/2*c)^7+(a^3*b-3*a*b^3)*tan(1/2*d*x+1/2*c)^6+(1/2*a^2*b^2-1/8*b^4)*tan(1/ 
2*d*x+1/2*c)^5+(3*a^3*b-7*a*b^3)*tan(1/2*d*x+1/2*c)^4+(-1/2*a^2*b^2+1/8*b^ 
4)*tan(1/2*d*x+1/2*c)^3+(3*a^3*b-19/3*a*b^3)*tan(1/2*d*x+1/2*c)^2+(-1/2*a^ 
2*b^2+9/8*b^4)*tan(1/2*d*x+1/2*c)+a^3*b-7/3*a*b^3)/(1+tan(1/2*d*x+1/2*c)^2 
)^4+1/8*(8*a^4-20*a^2*b^2+15*b^4)*arctan(tan(1/2*d*x+1/2*c)))+(2*a^6-6*a^4 
*b^2+6*a^2*b^4-2*b^6)/a/b^5/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/ 
2*c)+2*b)/(a^2-b^2)^(1/2)))
 
3.14.23.5 Fricas [A] (verification not implemented)

Time = 0.77 (sec) , antiderivative size = 508, normalized size of antiderivative = 2.02 \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=\left [\frac {8 \, a^{2} b^{3} \cos \left (d x + c\right )^{3} - 12 \, b^{5} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 12 \, b^{5} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (8 \, a^{5} - 20 \, a^{3} b^{2} + 15 \, a b^{4}\right )} d x + 12 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 24 \, {\left (a^{4} b - 2 \, a^{2} b^{3}\right )} \cos \left (d x + c\right ) - 3 \, {\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} - {\left (4 \, a^{3} b^{2} - 7 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, a b^{5} d}, \frac {8 \, a^{2} b^{3} \cos \left (d x + c\right )^{3} - 12 \, b^{5} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 12 \, b^{5} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (8 \, a^{5} - 20 \, a^{3} b^{2} + 15 \, a b^{4}\right )} d x - 24 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - 24 \, {\left (a^{4} b - 2 \, a^{2} b^{3}\right )} \cos \left (d x + c\right ) - 3 \, {\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} - {\left (4 \, a^{3} b^{2} - 7 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, a b^{5} d}\right ] \]

input
integrate(cos(d*x+c)^6*csc(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")
 
output
[1/24*(8*a^2*b^3*cos(d*x + c)^3 - 12*b^5*log(1/2*cos(d*x + c) + 1/2) + 12* 
b^5*log(-1/2*cos(d*x + c) + 1/2) - 3*(8*a^5 - 20*a^3*b^2 + 15*a*b^4)*d*x + 
 12*(a^4 - 2*a^2*b^2 + b^4)*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + 
 c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + 
b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) 
 - a^2 - b^2)) - 24*(a^4*b - 2*a^2*b^3)*cos(d*x + c) - 3*(2*a*b^4*cos(d*x 
+ c)^3 - (4*a^3*b^2 - 7*a*b^4)*cos(d*x + c))*sin(d*x + c))/(a*b^5*d), 1/24 
*(8*a^2*b^3*cos(d*x + c)^3 - 12*b^5*log(1/2*cos(d*x + c) + 1/2) + 12*b^5*l 
og(-1/2*cos(d*x + c) + 1/2) - 3*(8*a^5 - 20*a^3*b^2 + 15*a*b^4)*d*x - 24*( 
a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt( 
a^2 - b^2)*cos(d*x + c))) - 24*(a^4*b - 2*a^2*b^3)*cos(d*x + c) - 3*(2*a*b 
^4*cos(d*x + c)^3 - (4*a^3*b^2 - 7*a*b^4)*cos(d*x + c))*sin(d*x + c))/(a*b 
^5*d)]
 
3.14.23.6 Sympy [F]

\[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\cos ^{6}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \]

input
integrate(cos(d*x+c)**6*csc(d*x+c)/(a+b*sin(d*x+c)),x)
 
output
Integral(cos(c + d*x)**6*csc(c + d*x)/(a + b*sin(c + d*x)), x)
 
3.14.23.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate(cos(d*x+c)^6*csc(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.14.23.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.58 \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {24 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {3 \, {\left (8 \, a^{4} - 20 \, a^{2} b^{2} + 15 \, b^{4}\right )} {\left (d x + c\right )}}{b^{5}} + \frac {48 \, {\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a b^{5}} - \frac {2 \, {\left (12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 27 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 72 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 168 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 152 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 27 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, a^{3} - 56 \, a b^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4} b^{4}}}{24 \, d} \]

input
integrate(cos(d*x+c)^6*csc(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
1/24*(24*log(abs(tan(1/2*d*x + 1/2*c)))/a - 3*(8*a^4 - 20*a^2*b^2 + 15*b^4 
)*(d*x + c)/b^5 + 48*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*(pi*floor(1/2*(d* 
x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b 
^2)))/(sqrt(a^2 - b^2)*a*b^5) - 2*(12*a^2*b*tan(1/2*d*x + 1/2*c)^7 - 27*b^ 
3*tan(1/2*d*x + 1/2*c)^7 + 24*a^3*tan(1/2*d*x + 1/2*c)^6 - 72*a*b^2*tan(1/ 
2*d*x + 1/2*c)^6 + 12*a^2*b*tan(1/2*d*x + 1/2*c)^5 - 3*b^3*tan(1/2*d*x + 1 
/2*c)^5 + 72*a^3*tan(1/2*d*x + 1/2*c)^4 - 168*a*b^2*tan(1/2*d*x + 1/2*c)^4 
 - 12*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 3*b^3*tan(1/2*d*x + 1/2*c)^3 + 72*a^3 
*tan(1/2*d*x + 1/2*c)^2 - 152*a*b^2*tan(1/2*d*x + 1/2*c)^2 - 12*a^2*b*tan( 
1/2*d*x + 1/2*c) + 27*b^3*tan(1/2*d*x + 1/2*c) + 24*a^3 - 56*a*b^2)/((tan( 
1/2*d*x + 1/2*c)^2 + 1)^4*b^4))/d
 
3.14.23.9 Mupad [B] (verification not implemented)

Time = 13.46 (sec) , antiderivative size = 4866, normalized size of antiderivative = 19.31 \[ \int \frac {\cos ^5(c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx=\text {Too large to display} \]

input
int(cos(c + d*x)^6/(sin(c + d*x)*(a + b*sin(c + d*x))),x)
 
output
log(tan(c/2 + (d*x)/2))/(a*d) + ((2*(7*a*b^2 - 3*a^3))/(3*b^4) + (2*tan(c/ 
2 + (d*x)/2)^6*(3*a*b^2 - a^3))/b^4 + (2*tan(c/2 + (d*x)/2)^4*(7*a*b^2 - 3 
*a^3))/b^4 + (2*tan(c/2 + (d*x)/2)^2*(19*a*b^2 - 9*a^3))/(3*b^4) + (tan(c/ 
2 + (d*x)/2)*(4*a^2 - 9*b^2))/(4*b^3) + (tan(c/2 + (d*x)/2)^3*(4*a^2 - b^2 
))/(4*b^3) - (tan(c/2 + (d*x)/2)^5*(4*a^2 - b^2))/(4*b^3) - (tan(c/2 + (d* 
x)/2)^7*(4*a^2 - 9*b^2))/(4*b^3))/(d*(4*tan(c/2 + (d*x)/2)^2 + 6*tan(c/2 + 
 (d*x)/2)^4 + 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1)) - (atan( 
(((a^4*8i + b^4*15i - a^2*b^2*20i)*((840*a*b^14 - 112*a^15 - 3760*a^3*b^12 
 + (15271*a^5*b^10)/2 - (18191*a^7*b^8)/2 + (13697*a^9*b^6)/2 - 3252*a^11* 
b^4 + 900*a^13*b^2)/b^11 + (tan(c/2 + (d*x)/2)*(3664*b^20 - 18084*a^2*b^18 
 + 41125*a^4*b^16 - 56140*a^6*b^14 + 50084*a^8*b^12 - 29728*a^10*b^10 + 11 
392*a^12*b^8 - 2560*a^14*b^6 + 256*a^16*b^4))/(2*b^16) - ((a^4*8i + b^4*15 
i - a^2*b^2*20i)*((128*b^16 + 94*a^2*b^14 - (2395*a^4*b^12)/2 + 2068*a^6*b 
^10 - 1600*a^8*b^8 + 608*a^10*b^6 - 96*a^12*b^4)/b^11 + (tan(c/2 + (d*x)/2 
)*(4944*a*b^20 - 18960*a^3*b^18 + 29985*a^5*b^16 - 24664*a^7*b^14 + 10816* 
a^9*b^12 - 2240*a^11*b^10 + 128*a^13*b^8))/(2*b^16) - ((a^4*8i + b^4*15i - 
 a^2*b^2*20i)*((256*a*b^16 - 452*a^3*b^14 + 340*a^5*b^12 - 112*a^7*b^10)/b 
^11 - (((128*a^2*b^16 - 96*a^4*b^14)/b^11 + (tan(c/2 + (d*x)/2)*(1024*a*b^ 
22 - 1088*a^3*b^20 + 128*a^5*b^18))/(2*b^16))*(a^4*8i + b^4*15i - a^2*b^2* 
20i))/(8*b^5) + (tan(c/2 + (d*x)/2)*(1024*b^22 - 2368*a^2*b^20 + 2432*a...